Reactive dynamic traffic assignment in discrete-continuous large networks

Multiscale traffic flow simulation in very large networks

Kwami SOSSOE

J.P. Lebacque and H. Haj-Salem

- 1. Introduction
- 2. Motivation & AIMS
- 3. The bi-dimensional traffic theory
- 4. Reactive dynamic assignment
- 5. Multiscale traffic flow modeling
- 6. Numerical Simulation
- 7. Conclusion and Perspectives

The scales with principal simulators

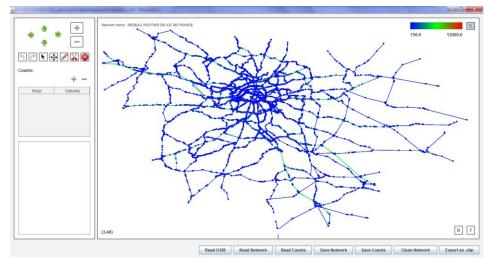
- Several traffic/transport simulators which represent networks traffic in different scales. Scales are:
 - Microscopic
 - Macroscopic: LWR, GSOM (Payne-Whitham, ARZ, Zhang, Colombo 2 phases) family models
 - ◆ Two-dimensional → BTF (Bi-dimensional Traffic Flow) model
- Traffic simulators:
 - SUMO
 - MATSim with VIA/OTFVIS, Dynameq 4, etc.
 - BidiTSim: the Bi-dimensional transport simulator

2. Our AIMS. What are the main ISSUES

Ile de France road's network map

Ours AIMS:

- Traffic prediction/estimation
- Traffic regulation

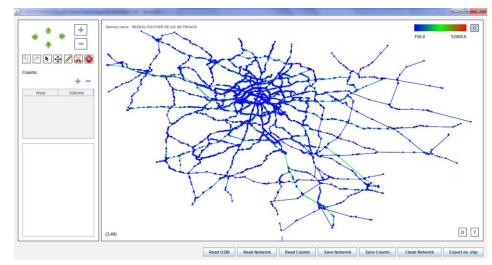

of large networks comprising highways (the main roads) and urban area (the secondary roads).

2. Our AIMS. What are the main ISSUES

Ile de France road's network map

Kwami Sossoe

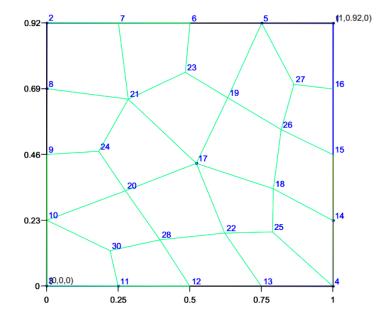
The network viewed in networkEditor of MATSim


2. Our AIMS. What are the main ISSUES

Main issues:

- A huge number of arcs & nodes
- Cumbersome calculations
- Long time to get traffic outputs

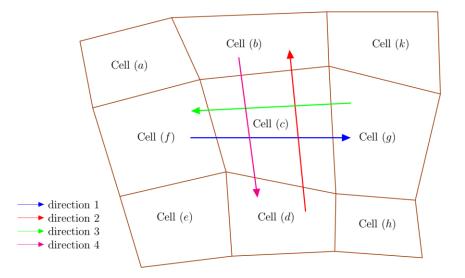
• Challenges:


- Find a good scale for traffic modeling -> Refine the traffic flow theory to achieve our goals
- Get proper representation of traffic conditions on large network based on the bidimensional traffic theory

The network viewed in networkEditor of MATSim


Multiscale flow & Reactive DTA 6

Simplification of the urban network: Network-domain



Kwami Sossoe

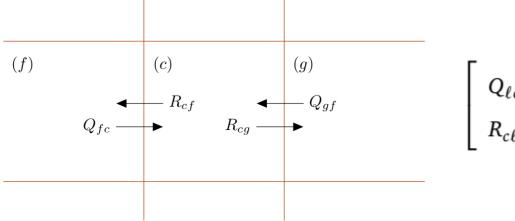
Zone-based representation of the Network-domain

Considered dominant directions within 2d cells/ traffic zones

Flow optimization at internal intersections of 2d cells

$$\max_{(q,r)} \left(\sum_{i=1}^{4} \Phi_i(q_i) + \sum_{j=1}^{4} \Psi_j(r_j) \right)$$

s.t.
$$\begin{vmatrix} 0 \le q_i \le \Delta_{ci}^{t+1/2}, & \forall i \in \{1, 2, 3, 4\}, \\ 0 \le r_j \le \Sigma_{cj}^{t+1/2}, & \forall j \in \{1, 2, 3, 4\}, \\ -r_j + \sum_{i=1}^{4} q_i \Gamma_{c,ij}^t = 0, & \forall j \in \{1, 2, 3, 4\}. \end{vmatrix}$$

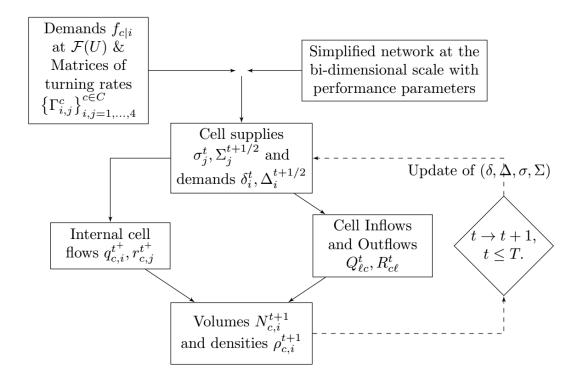


Kwami Sossoe

3. The bi-dimensional traffic theory (3)

Traffic changes between 2d cells/ zones

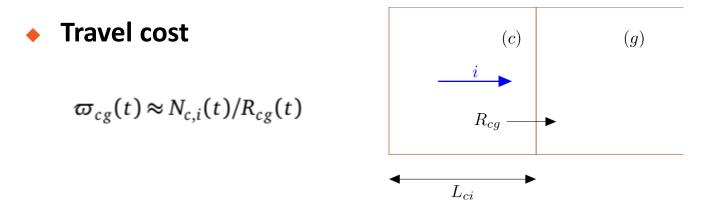
From the Law of the minimum (Ref. LEBACQUE and al.)


$$Q_{\ell c}(t) = \min\left(\delta_{\ell,\ell->c}(t), \sigma_{c,\ell->c}(t)\right)$$
$$R_{c\ell}(t) = \min\left(\delta_{c,c->\ell}(t), \sigma_{\ell,c->\ell}(t)\right)$$

 $N_{c,i}(t+\delta t) = N_{c,i}(t) + (Q_{fc}(t) - R_{cg}(t) + r_{c,i}(t^{+}) - q_{c,i}(t^{+}))\delta t$

Kwami Sossoe

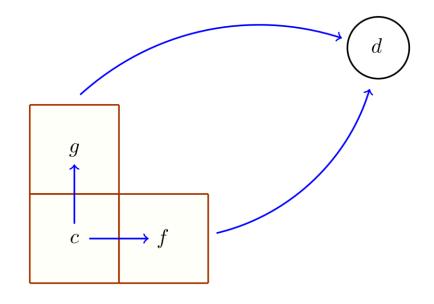
3. The bi-dimensional traffic theory (4)


Bi-dimensional network flow computing engine

Kwami Sossoe

4. Reactive dynamic assignment (1)

Travel Cost & ITT


Instantaneous travel time

ITT(path; t) =
$$\int_{\text{path}} d\chi / V(\chi, t)$$

Kwami Sossoe

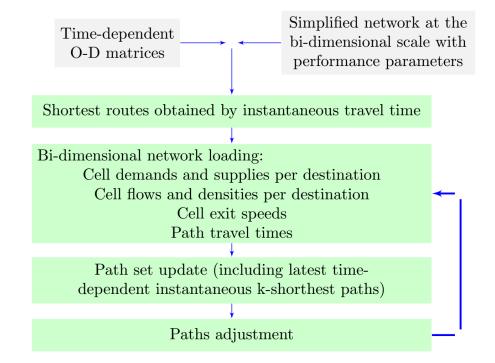
4. Reactive dynamic assignment (2)

Logit formulation (1)

$$\pi_c^d(t) \rightarrow \begin{cases} \varpi_{cf}^t + \pi_f^d(t + \varpi_{cf}^t) = C_f^d(t) \\ \varpi_{cg}^t + \pi_g^d(t + \varpi_{cg}^t) = C_g^d(t). \end{cases}$$

Kwami Sossoe

Logit formulation (2)

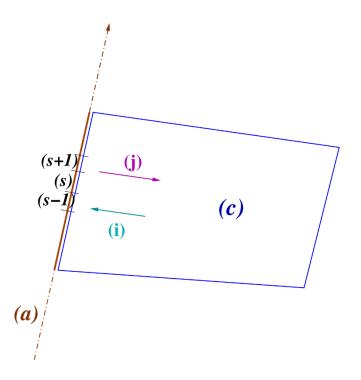

• Logit formulation

The Probability of route's choice by users is formulated as follows:

$$\begin{bmatrix} P((\text{choice} = (f)/\text{Dest.} = d)(t) = \frac{\exp(-\theta C_f^d(t))}{\exp(-\theta C_f^d(t)) + \exp(-\theta C_g^d(t))} = \mathscr{F}_{cf}^d(t) \\ P(\text{choice} = (g)/\text{Dest.} = d)(t) = \frac{\exp(-\theta C_g^d(t))}{\exp(-\theta C_g^d(t)) + \exp(-\theta C_g^d(t))} = \mathscr{F}_{cg}^d(t). \end{bmatrix}$$

4. Reactive dynamic assignment (3)

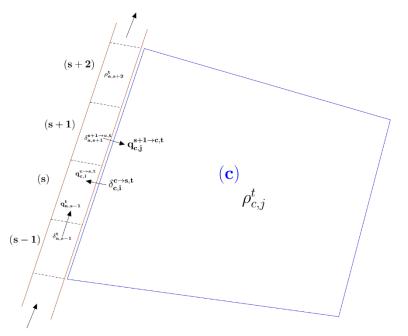
Reactive Dynamic Traffic Assignment Scheme



5. Multiscale traffic flow modeling

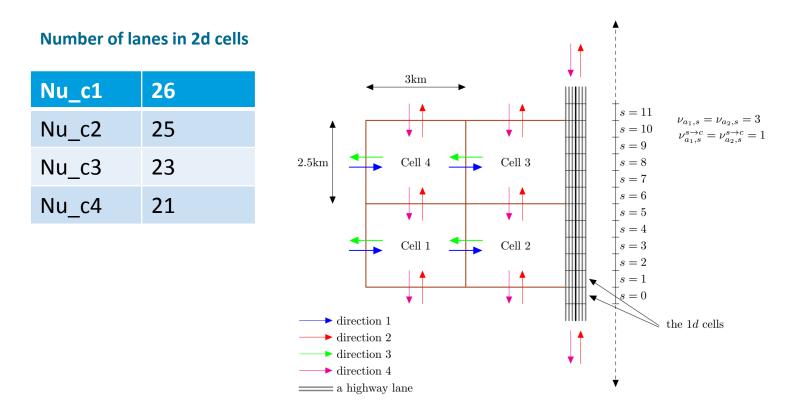
Ile de France road's network map

Traffic change between links and 2d Cell


Kwami Sossoe

5. Multiscale traffic flow modeling

Ile de France road's network map


Traffic change between links and 2d Cell

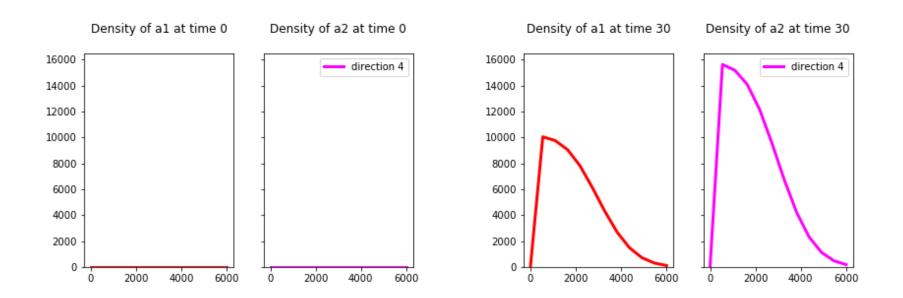
Kwami Sossoe

6. Numerical Simulation

Case Study

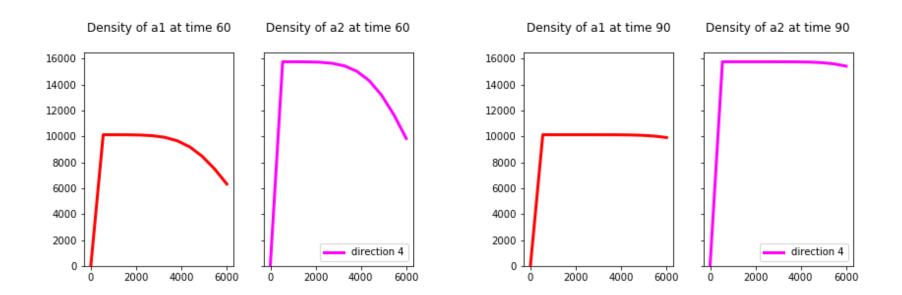
Multiscale flow & Reactive DTA 17

Characteristics of the surface network (network domain)

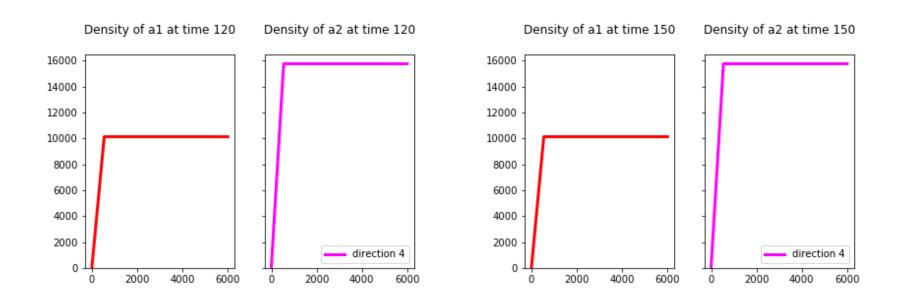

Maximal density	236.25 Veh/km/lane
Critical density	33.75 Veh/km/lane
Maximal velocity	80 km/h/lane
Maximal flow	2700 Veh/h/lane

Characteristics of the principal artery for GSOM flow computing

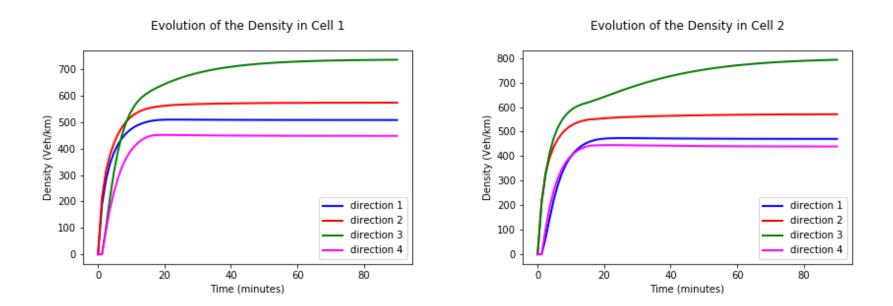
Maximal density	720 Veh/km/lane
Critical density	97.2 Veh/km/lane
Maximal velocity	50 km/h/lane
Maximal flow	1350 Veh/h/lane


Kwami Sossoe

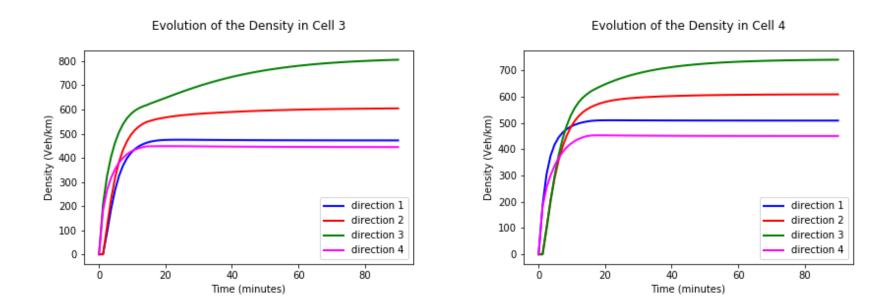
Evolution of the Density on Arteries


Multiscale flow & Reactive DTA 19

Evolution of the Density on Arteries

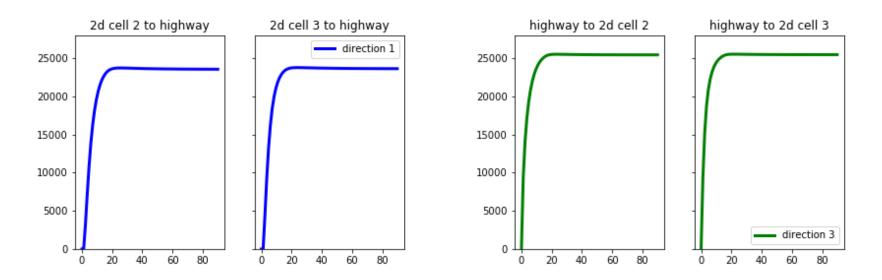

Kwami Sossoe

Evolution of the Density on Arteries


Multiscale flow & Reactive DTA 21

Evolution of the Density on 2d Cells

Multiscale flow & Reactive DTA 22


Evolution of the Density on 2d Cells

Multiscale flow & Reactive DTA 23

Flow from 2d Cells to Arteries

Flow from Arteries to 2d Cells

Conclusion

- 1. Reduction of cumbersome calculations when large networks is involved
- 2. Traffic flow estimation \leftarrow Traffic information and Instantaneous travel time

Perspectives

- 1. Automatic detection of dominant directions of propagation
- 2. Automatic detection of number of routes and lanes of bidimensional (2d) cells
- 3. Application of the **multiscale traffic flow model** to Real case scenarios
- **4**. Take into account Traffic attributes:
 - 1 modes of transportation
 - 2. Class of vehicles

- SOSSOE, K., LEBACQUE, J., MOKRANI, A., and HAJ-SALEM, H. Traffic flow within a two-dimensional continuum anisotropic network. *Transportation Research Procedia 10* (2015), 217–225.
- 2. SOSSOE, K., and LEBACQUE, J.-P. Reactive Dynamic Assignment for a Bi-dimensional Traffic Flow Model. AISC 539, ICSS 2016, 2017, ch. 17.
- 3. LEBACQUE, J., MAMMAR, S., and HAJ-SALEM, H. **Generic second-order traffic flow modeling.** In *Proceedings of the 17th International Symposium on Transportation and Traffic Theory* (London, 2007), B. H. E. R.E. Allsop, M.G.H. Bell, Ed., pp. 749–770.
- KHOSHYARAN, M., and LEBACQUE, J. A Reactive Dynamic Assignment Scheme.
 Mathematics in Transport Planning and Control (Default Book Series, Volume), 1998, ch.
 13, pp. 131–143.

THANKS FOR YOUR ATTENTION ! QUESTIONS, PLEASE !

Contact: <u>kwami.sossoe@univ-paris-est.fr</u> Kwami SOSSOE

