Institut français des sciences et technologies des transports, de l'aménagement et des réseaux

Modélisation et gestion du trafic ferroviaire : résultats du projet SIGIFret

Paola Pellegrini

Context

Railway infrastructure has a limited physical capacity

Context

The problem

SIGIFret

Case studies

RECIFE-MILP

Experimental setup

Results

Conclusion

This capacity is often **insufficient** to smoothly accommodate traffic when unexpected events perturb operations

An **unexpected event** causing the delay of one train of one minute may imply the emergence of conflicts, mainly at junctions

conflict : multiple trains requesting the same portion of track concurrently

junction : location where multiple lines cross

Institut français des sciences et technologies des transports, de l'aménagement et des réseaux

www.ifsttarfi

Context

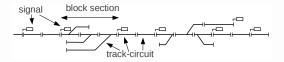
conflict : multiple trains requesting the same portion of track concurrently

Context

The problem

SIGIFret

Case studies


RECIFE-MILP

Experimental setup

Results

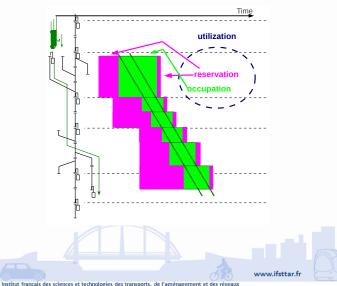
Conclusion

junction : location where multiple lines cross

Context

The problem

SIGIFret


Case studies

RECIFE-MILP

Experimental setup

Results

Conclusion

The problem

Routing and scheduling problem

Context

The problem

SIGIFret

Case studies

RECIFE-MILP

Experimental setup

Results

Conclusion

What is the train routing and scheduling which minimizes delay propagation?

We propose **RECIFE-MILP** :

 an algorithm based on the solution of a mixed-integer linear programming model

able to find the optimal solution to this problem

The SIGIFret project

- Evaluation of a tool for managing traffic crossing a junctions Quantification in *simulation* of the potential impact of such a tool
- Design of a model for capacity analysis through the solution of the saturation problem

The problem

Case studies

SIGIEret

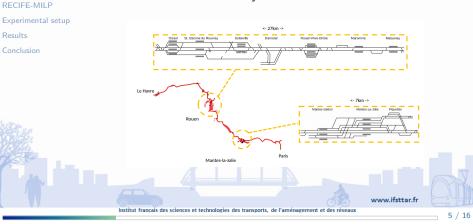
The SIGIFret project

- Evaluation of a tool for managing traffic crossing a junctions Quantification in *simulation* of the potential impact of such a tool
- Design of a model for capacity analysis through the solution of the saturation problem

The problem

Case studies

SIGIEret


Case studies

Two control areas on the line Paris-Le Havre are considered :

Rouen

The problem SIGIFret Mantes-la-Jolie

This line is characterized by an intense mix traffic

Mantes-La-Jolie

7-km line around the Mantes-La-Jolie station

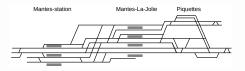
Context

The problem

SIGIFret

Case studies

RECIFE-MILP


Experimental setup

Results

Conclusion

with : * 2 stations
 * 117 track-circuits

* 226 block sections * 282 routes

Perturbed scenarios :

- 31 perturbations of traffic at peak time (46 trains)
- 25 perturbations with dense traffic including freight trains (38 trains)
- 4 perturbations with an unscheduled freight train arriving within dense traffic (27 trains)

Rouen-Rive-Droite

27-km line around the Rouen-Rive-Droite station

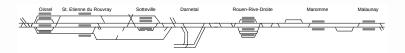
Context

The problem

SIGIFret

Case studies

RECIFE-MILP


Experimental setup

Results

Conclusion

with : * 6 stations
 * 188 track-circuits

- * 563 block sections
- * 6529 routes

Perturbed scenarios :

▶ 14 perturbations of traffic at peak time (41 trains)

Types of perturbation

- Entrance delay in the infrastructure
- Additional dwell time at stations
- Temporary speed limit

The problem

Case studies

Results

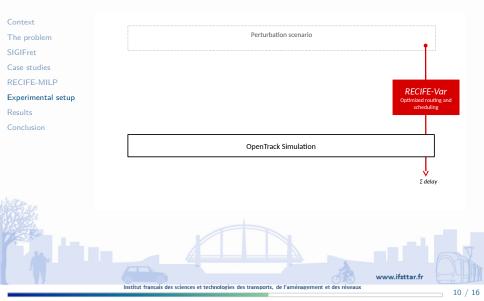
RECIFE-MILP Experimental setup

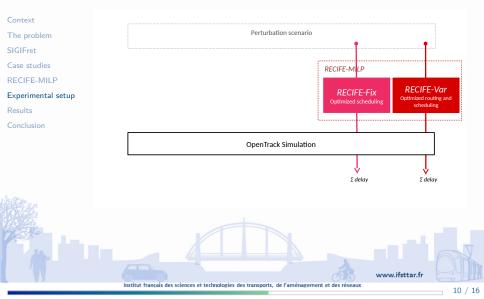
- Neglect of instructions on the entrance time in the infrastructure by some trains
- Absence of equipment for speed recommendation on some trains
- Unexpected performance of some trains
- Unavailability of a part of the infrastructure due to maintenance works

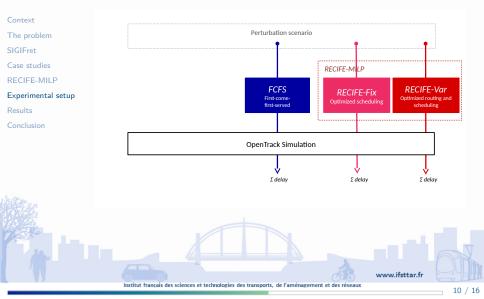
nstitut français des sciences et technologies des transports, de l'aménagement et des réseaux

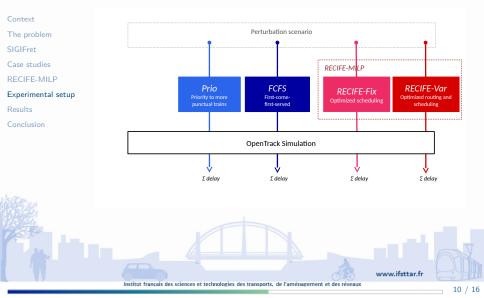
RECIFE-MILP : The MILP formulation

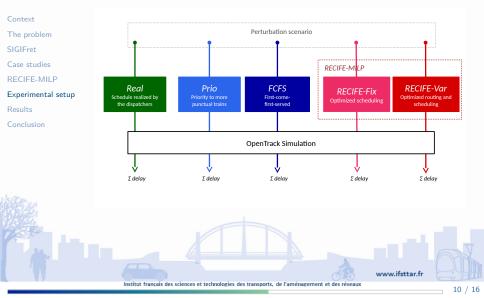
Variables


Context


- The problem
- SIGIFret
- Case studies
- RECIFE-MILP
- Experimental setup
- Results
- Conclusion


Continuous variables


- start time of detection of a train on a track-circuit along a route
- delay suffered by a train on a track-circuit along a route
- start time of utilization of a track-circuit by a train
- end time of utilization of a track-circuit by a train
 Binary variables
 - use of a route by a train
 - precedence on track-circuit utilization for pairs of trains


Institut français des sciences et technologies des transports, de l'aménagement et des réseaux

Computational details

We set a **maximum computational** time of 5 minutes for each optimization

If RECIFE-MILP proves the **optimality** of a solution earlier, the computation stops

The mean computational time¹ has been :

► Mantes-la-Jolie :

The problem

Case studies

Results

RECIFE-MILP Experimental setup

- RECIFE-Fix : 1 second (3K real and 4K binary variables, 17K constraints)
- RECIFE-Var : 11 seconds (16K real and 9K binary variables, 72K constraints)
- Rouen-Rive-Droite :
 - RECIFE-Fix : 21 second (6K real and 6K binary variables, 28K constraints)
 - RECIFE-Var : 273 seconds
 - (900K real and 22K binary variables, 3187K constraints)

1. On an Intel Xeon 2.67GHz, 12 cores, 24 GB RAM

www.ifsttar.fr

Institut français des sciences et technologies des transports, de l'aménagement et des réseaux

Results : Mantes-La-Jolie

mean % impr. in total secondary delay

31 scenarios : traffic at peak time

Context

The problem

SIGIFret

Case studies

RECIFE-MILP

Experimental setup

Results

Conclusion

	RECIFE-Fix	RECIFE-Var
Prio	73%	94%
FCFS	26%	82%

▶ 25 scenarios : dense traffic including freight trains

	RECIFE-Fix	RECIFE-Var
Prio	70%	93%
FCFS	8%	80%

Results : Rouen-Rive-Droite

mean % impr. in total secondary delay

▶ 14 scenarios : traffic at peak time

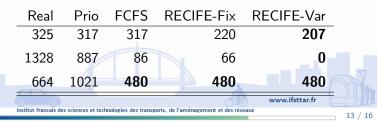
	RECIFE-Fix	RECIFE-Var
Prio	67%	69%
FCFS	46%	60%

Results

Conclusion

The problem SIGIFret Case studies RECIFE-MILP Experimental setup

Results : Rouen-Rive-Droite


mean % impr. in total secondary delay

▶ 14 scenarios : traffic at peak time

	RECIFE-Fix	RECIFE-Var
Prio	67%	69%
FCFS	46%	60%

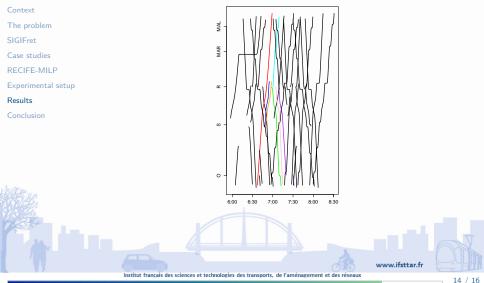
total secondary delay (sec)

 3 scenarios : perturbations actually occurred and managed by dispatchers

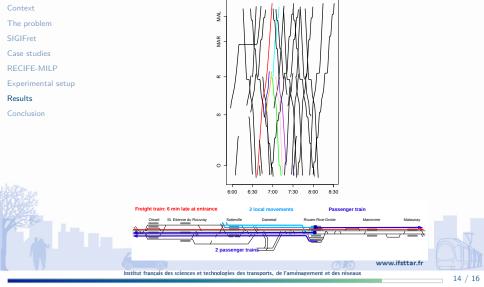
The problem

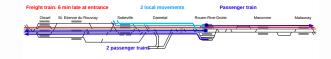
SIGIFret

Case studies


RECIFE-MILP

Experimental setup


Results


Conclusion

Freight train : 6 minutes late at entrance

Freight train : 6 minutes late at entrance

Context

The problem

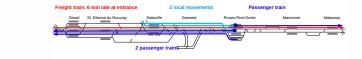
SIGIFret

Case studies

RECIFE-MILP

Experimental setup


Results


Conclusion

Real : total secondary delay 21'55

Freight train **between** the two local movements \Rightarrow * additional freight train delay 14'45

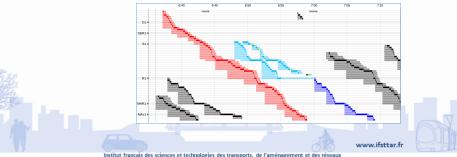
- * descending local moment delay :
- 2 passenger trains delay 6'20 et '50 $\,$

Context

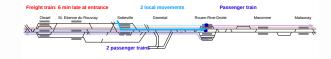
The problem

SIGIFret

Case studies


RECIFE-MILP

Experimental setup


Results

Conclusion

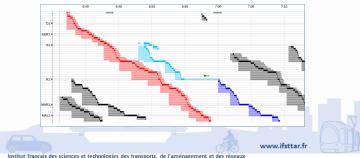
RECIFE-Fix : total secondary delay '66 Freight train **first** ⇒ * descending local moment delay : passenger train delay '66

14 / 16

The problem

Case studies

RECIEE-MILP


Experimental setup

Results

RECIFE-Var : no secondary delay

Freight train **first** & reroute \Rightarrow no impact of the freight of descending local moment

train primary delay

14 / 16

Conclusion

Context The problem

The proble

SIGIFret

Case studies

RECIFE-MILP

Experimental setup

Results

Conclusion

We have assessed the potential impact of **optimized railway traffic management** on the propagation of delay

Thanks to **microscopic simulation**, we have showed that optimization might strongly improve the current practice

Dispatchers from SNCF **supported our conclusion** after analyzing the simulation results

www.ifsttar.fr

15 / 16

Institut français des sciences et technologies des transports, de l'aménagement et des réseaux