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Max-plus algebra model Instability due to passenger demand Stable dynamic programming model

Outline

1. Max-plus algebra model

• analytical results on the tain dynamics
• without taking into account passenger traffic demand

2. Stochastic dynamic programming model

• Take into account passenger demand

3. Fix the parameters of the control model

• Derivation of the passenger demand effect on the train dynamics
and on the service performance
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Max-plus algebra model Instability due to passenger demand Stable dynamic programming model

Max-plus algebra model

n number of segments in the line.

m number of moving trains.

dk
j the k th train departure time from node j .

ak
j the k th train arrival time to node j .

rj the running time of a train on segment j .

wk
j = dk

j − ak
j the k th train dwell time on node j .

tk
j = rj + wk

j .

gk
j = ak

j − dk−1
j the node safe separation

hk
j = dk

j − dk−1
j = gk

j + wk
j : the k th departure

time-headway at node j .

sk
j = g

k+bj
j − rk

j (by definition).

—————–

x̄ upperbound for x .

x lower bound for x .

—————–

g = r + s

t = r + w

h = g + w = t + s = (n/m)t = (n/(n − m))s
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Max-plus algebra model Instability due to passenger demand Stable dynamic programming model

The model

Two time constraints

A constraint on the travel time on every segment j .

dk
j ≥ d

k−bj
j−1 + t j . (1)

A constraint on the safe separation time at every segment j .

dk
j − d

k−b̄j+1
j+1 = a

k+bj+1
j+1 − rj+1 − d

k−b̄j+1
j+1 = g

k+bj+1
j+1 − rj+1 ≥ g

j+1
− rj+1 = sj+1.

That is

dk
j ≥ d

k−b̄j+1
j+1 + sj+1. (2)

We combine the two constraints

dk
j = max{d

k−bj
j−1 + t j , d

k−b̄j+1
j+1 + sj+1}, k ≥ 1, 1 ≤ j ≤ n, (3)
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Max-plus algebra formulation

We have

dk
j = max{d

k−bj
j−1 + t j , d

k−b̄j+1
j+1 + sj+1}, k ≥ 1, 1 ≤ j ≤ n,

Max-plus operations and noations

a⊕ b := max(a, b)

a⊗ b := a + b

γx(k) := x(k − 1)

γ l x(k) := x(k − l)

Then
dj = t jγ

bj dj−1 ⊕ sj+1γ
b̄j+1 dj+1, 1 ≤ j ≤ n. (4)
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Max-plus matrix formulation
Homogeneous linear Max-plus algebra systems

x(k) =

p⊕
l=0

Al ⊗ x(k − l) =

p⊕
l=0

γ
l Al x = A(γ)x. (5)

Then
d = A(γ)⊗ d, (6)

where A(γ) is given as follows.

A(γ) =



ε γb̄2s2 ε · · · ε γb1 t1
γb2 t2 ε γb̄3s3 ε · · · ε

. . . ε
. . .

ε · · · γbj t j ε γb̄j+1sj+1 ε
. . . ε

γb̄1s1 ε · · · ε γbn tn ε


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Max-plus generalized eigenvalue

Generalized eigenvalue

A(µ−1)⊗ v = v, (7)

where A(µ−1) is the matrix obtained by valuating the
polynomial matrix A(γ) at µ−1.

Theorem (Baccelli et al. 1992, Goverd 2007)
Let A(γ) = ⊕p

l=0Alγ
l be an irreducible polynomial matrix

with acyclic subgraph G(A0). Then A(γ) has a unique
generalized eigenvalue µ > ε and finite eigenvectors v > ε

such that A(µ−1)⊗ v = v , and µ is equal to the maximum
cycle mean of G(A(γ)).

µ = max
c∈C

W (c)/D(c),

where C is the set of all elementary circuits in G(A(γ)).

Graph associated to A(γ)

For every 0 ≤ l ≤ p, an arc (i, j, l) is associated for
each non-null (6= ε) entree (i, j) of max-plus matrix
Al .

A weight W (i, j, l) and a duration D(i, j, l) are
associated to each arc (i, j, l) in the graph, with
W (i, j, l) = (Al )ij 6= ε and D(i, j, l) = l .

Similarly, a weight, resp. duration of a circuit (directed
cycle) in the graph is the standard sum of the
weights, resp. durations of all the arcs of the circuit.

The cycle mean of a circuit c with a weight W (c) and
a duration D(c) is W (c)/D(c).

A polynomial matrix A(γ) is said to be irreducible, if
G(A(γ)) is strongly connected.
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Max-plus algebra model Instability due to passenger demand Stable dynamic programming model

Average asymptotic train time-headway

Theorem
The dynamic system admits a unique additive eigenvalue µ,
which is also its asymptotic average growth rate, and which is
interpreted in term of train dynamics, as the asymptotic
average time-headway h of the trains. We have

h = µ = max

{∑
j t j

m
,max

j
(t j + sj ),

∑
j sj

n − m

}
.

Proof
h is given as the maximum cycle mean of G(A(γ)). Three
different elementary circuits are distinguished on G(A(γ)).

The hamiltonian circuit in the direction of the train
movements, with mean

∑
j t j/m.

All the circuits of two links relying nodes j and j + 1,
with mean t j + sj each.

The hamiltonian circuit in reverse direction of the
train dynamics, with mean

∑
j sj/(n − m).
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Fundamental traffic diagram (1/3)

9 stations⇒ 18 platforms

max train speed = 80 km/h

block length = 200 m

minimum dwell time = 10 s

safety time = 30 s

h(σ) = max

τσ, hmin,
ω

1
σ
− 1
σ

 ,

h is the average time headway,

σ = L/m is the average space-headway,

τ =
∑

j t j/L = 1/v is the inverse of the maximum
train speed v ,

hmin = maxj hj = maxj (t j + sj ),

ω =
∑

j sj/L,

σ = L/n is the minimum space-headway of trains on
the line.
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Fundamental traffic diagram (2/3)

9 stations⇒ 18 platforms

max train speed = 80 km/h

block length = 200 m

minimum dwell time = 10 s

safety time = 30 s

h(σ) = max

τσ, hmin,
ω

1
σ
− 1
σ

 ,
w(ρ) = max

{
w,

hmin

ρ̄
ρ− r,

ω

ρ̄− ρ
− g

}
.

g(ρ) = max
{
τ

ρ
− w, (r + hmin)−

hmin

ρ̄
ρ, g

}
.

ρ̄ = 1/σ is the maximum train density on the line.

w =
∑

j w j/n, r =
∑

j rj/n.

g =
∑

j gj/n.
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Max-plus algebra model Instability due to passenger demand Stable dynamic programming model

Fundamental traffic diagram (3/3)

9 stations⇒ 18 platforms

max train speed = 80 km/h

block length = 200 m

minimum dwell time = 10 s

safety time = 30 s

f (ρ) = min
{

vρ, fmax,w′(ρ̄− ρ)
}
,

fmax = 1/hmin is the maximum flow of trains that
can pass through one segment.

v = 1/τ is the free (or maximum) train-speed on the
metroline.

w′ = 1/ω is the backward wave-speed for the train
dynamics.

Traffic Modeling and Real-time Control for Metro Lines – SMRT - 12 May 2016 – Nadir Farhi 11



Max-plus algebra model Instability due to passenger demand Stable dynamic programming model

The traffic phases (1/3)

Free flow traffic phase. (0 ≤ ρ ≤ fmax/v )

Trains move freely on the line, which operates under
capacity.

Big average time-headways h = w + g.

Minimum dwell times w .

Big average safe separation time g.
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The traffic phases (2/3)

Maximum train-capacity traffic phase.

(fmax/v ≤ ρ ≤ ρ̄− fmax/w′).

The line operates at its maximum train-capacity.

The frequency is independent of the number of
moving trains.

The average dwell time w increases linearly with the
number of the moving trains.

The average safe separation time g decreases
linearly with the number of moving trains.

The average time-headway h = g + w remains
constant and independent of the number of moving
trains.

The optimum number Lfmax/v of moving trains on
the line is attained at the beginning of the this traffic
phase, as the passengers are not taken into account.
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The traffic phases (3/3)

Congestion traffic phase. (ρ̄− fmax/w′ ≤ ρ ≤ ρ̄).

Trains bother each other on the line, which operates
under capacity.

Big average time-headways h.

The safe separation time is independent of the
number of moving trains.

The average time-headway, as well as the average
dwell time increase rapidly with the number of
moving trains.
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Unstable dynamic model (1/3)

The train dwell time wj at platform j depends on the
passenger volume at platform j .

which depends on the safe separation time gj on the
same platform.

We do not consider a dynamic model for the
passenger volumes on platforms.

The dwell times on platforms depend directly on the
passenger arrival rates.

We consider the following additional constraint on the dwell
time at plaforms.

wk
j ≥


λj
αj

gk
j , if j indexes a platform,

0 otherwise.

αj is the total passenger upload rate from platform j
onto trains, if j indexes a platform ; and αj is zero
otherwise.

gk
j = ak

j − dk−1
j is, the safe separation time on

segment j .

λj is the average rate of the total arrival flow of
passengers to platform j , if j indexes a platform ; and
λj is zero otherwise.
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Unstable dynamic model (2/3)

By taking ito account the additional constraint we have

dk
j ≥ d

k−bj
j−1 + rj + max

{
w j ,

λj

αj
gk

j

}
.

Then

dk
j = max



d
k−bj
j−1 + rj + w j ,(
1 +

λj
αj

)
d

k−bj
j−1 −

(
λj
αj

)
dk−1

j +

(
1 +

λj
αj

)
rj ,

d
k−b̄j+1
j+1 + sj+1.

The dynamic system has explicit and implicit terms.

It can be written as follow.

dk
j = max

u∈U
[(Mudk−1)j + (Nudk )j + cu

j ],

where Mu and Nu are square matrices, and cu is a
family of vectors.

Matrices Nu express implicit terms.

If ∃j, λj/αj > 0, then one of the matrices
Mu , u ∈ U or Nu , u ∈ U is not sub-stochastic.

In this case, the dynamic system cannot be seen as
a dynamic programming system of a stochastic
optimal control problem.
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Max-plus algebra model Instability due to passenger demand Stable dynamic programming model

Unstable dynamic model (3/3)

Particular cases

If m = 0 or m = n, then the dynamic system is fully
implicit (it is not triangular).

It admits an asymptotic regime with a unique
asympotic average train time-headway.

This case corresponds to 0 or n trains on the metro
line. No train departure is possible for these two
cases.

We have the average train flow f = 0 corresponding
to the average time headway h = +∞.

————–

If 0 < m < n, then the dynamic system is triangular.

There exists an order of updating the components of
the state vector dk , in such a way that no implicit
term appears.

Instability

The dynamic system is not stable (see Breusegem et
al. 1991).

Consider the metro line as a server of passengers.

• average passenger arrival rate λ
• average service rate αw∗/h (with the

assumption of infinite passenger capacity of
trains).

In the high passenger demand case, where the
second term of the maximum operator of the
dynamics is activated, we get

w∗ = (λ/α)g

Therefore λ = αw∗/g > αw∗/h since g < h.

Hence, the passenger server is unstable.
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Max-plus algebra model Instability due to passenger demand Stable dynamic programming model

Stable dynamic programming model (1/3)

We modify the train dynamics in order to guarantee
its stability.

We replace the dwell time control formula

wk
j ≥


λj
αj

gk
j , if j indexes a platform,

0 otherwise.

by the following.

wk
j ≥

w j −
θk

j
λk

j /α
k
j

gk
j if j indexes a platform,

0 otherwise.

We reversed the sign of the relationship between the
dwell time wk

j and the safe separation time gk
j .

without reversing the relationship between the dwell
time wk

j and the ratio λk
j /α

k
j .

w j (maximum dwell time on node j) and θk
j are

control parameters to be fixed.

The dynamics are now written

dk
j = max



d
k−bj
j−1 + rj + w j ,(
1− δk

j

)
d

k−bj
j−1 + δk

j dk−1
j +

(
1− δk

j

)
rj + w j ,

d
k−b̄j+1
j+1 + sj+1,

where δk
j = θk

j α
k
j /λ

k
j , ∀j, k .

If δk
j are independent of k for every j , then

dk
j = max

u∈U
[(Mudk−1)j + (Nudk )j + cu

j ],

In this case, the system is a dynamic programming
system of an optimal control problem of a Markov
chain.
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Stable dynamic programming model (2/3)

Let us consider the dynamic system xk+1 = f (xk ), where
f : Rn → Rn .

A map f is said to be additive 1-homogeneous if

∀x ∈ Rn
, ∀a ∈ R, f (a1 + x) = a1 + f (x).

f is said to be monotone if

∀x, y ∈ Rn
, x ≤ y ⇒ f (x) ≤ f (y).

If f is 1-homogeneous and monotone, then it is non
expansive (or 1-Lipschitz) for the supremum norm, i.
e.

∀x, y ∈ Rn
, ||f (x)− f (y)||∞ ≤ ||x − y||∞,

In this case a directed graph G(f ) is associated to f .

Directed graph G(f ) associated to f (Gaubert et al. 1999)
It is defined by the set of nodes {1, 2, . . . , n} and by a set
of arcs such that there exists an arc from a node i to a node j
if limη→∞ fi (ηej ) =∞, where ej is the j th vector of the
canonical basis of Rn .

Theorem. (Gaubert et al. 1998, Gunawardena et al. 1995)

If f : Rn → Rn is 1-homogeneous and monotone and if G(f )

is strongly connected then

f admits an (additive) eigenvalue, i.e.

∃µ ∈ R, ∃x ∈ Rn : f (x) = µ + x.

Moreover, µ coincides with the asymptotic average
growth rate of the dynamic system xk+1 = f (xk ),
defined by limk→∞ f k (x)/k .
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Stable dynamic programming model (3/3)

The system of the stationary regime is

h + dj = max
u∈U

[(Mud)j + (Nu(h + d))j + cu
j ],

where h is an eigenvalue and d is an associated
eigenvector.

Theorem.

1. If δk
j are independent of k for every j , and if

0 ≤ δj ≤ 1, ∀j , then the algebraic system of the
stationary regime admits a unique eigenvalue h.

2. Moreover, the asymptotic average train
time-headway, coincides with the eigenvalue h,
independent of the initial state vector d0.

We do not have yet an analytical formula for the
asymptotic train time-headway.

However, the Theorem above guarantees its
existence and its uniqueness.

Therefore, by iterating the dynamics, one can
approximate the asymptotic average train
time-headway as follows.

h ≈ dK
j /K , ∀j, for a big value of K .
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Control parameters w̄ and θ

Theorem. Let h̃ be the asymptotic average time-headway
solution of the max-plus linear system. The dynamic
programming system with parameters w̄j = h̃, ∀j , and
δj = 1, ∀j , is a max-plus linear system, whose asymptotic
average time-headway coincides with h̃.

h = max

{∑
j t j

m
,max

j
(t j + sj ),

∑
j sj

n − m
, h̃

}
= h̃.

proof.

If δj = 1, ∀j , then system is a max-plus linear
system whose associated graph has n additional
circuits (which are loop-circuits).

Moreover, if w̄j = h̃, ∀j , then the cycle mean of the
loops are all equal to h̃.

All the other parameters remaining the same, the
asymptotic average time-headway h is given by the
maximum cycle mean of the graph associated to the
obtained max-plus linear system.

Four different elementary circuits are distinguished.

• We have the same three cicuits.
• The n additional loop-circuits have mean h̃.
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Control parameters w̄ and θ

The latter Theorem, tells us that one can simply fix

(w̄j , θ
k
j ) = (h̃(ρ), λk

j /α
k
j )

or equivalently

(w̄j , δ
k
j ) = (h̃(ρ), 1),

to obtain a max-plus linear dynamic system, which
does not take into account passenger effects.

The question here, is rather, how to fix the control
parameters (w̄j , θj ) in order to really model the effect
of passengers on the dwell times ?

We show below that a convenient way is

w̄(ρ) := w̄j (ρ) = h̃(ρ), ∀j,

θ(ρ) := θ
k
j (ρ) = w̃∗(ρ)/h̃(ρ), ∀j, k.

where h̃ and w̃∗ are respectively the asymptotic
average time-headway and dwell time on platforms
derived from the max-plus linear traffic model.
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Control parameters w̄ and θ

At the stationary regime, server-stability condition is

λ ≤ α(w̃∗(ρ)/h̃(ρ))

Then, for λk
j = λ̃k

j (ρ) := α(w̃∗(ρ)/h̃(ρ)), ∀k, j ,
we have

(w̄j , θ
k
j ) = (h̃(ρ), λk

j /α
k
j ) = (h̃(ρ), w̃∗(ρ)/h̃(ρ)).

The dynamic system is max-plus linear, i.e. it
behaves as if passengers do not have any effect on
the train dynamics.

————–
Basing on that, we assume that λ̃k

j (ρ) is a threshold

for λk
j , i.e. a lower bound for λk

j beyond which the
passengers will have an effect on the train dynamics.

We now fix, the parameters
(w̄j , θ

k
j ) = (h̃(ρ), w̃∗(ρ)/h̃(ρ)) independent of λk

j .

1. If λk
j = λ̃k

j (ρ), ∀k, j , we get the max-plus linear
dynamic system, and the passengers do not have
effect on the train dynamics.

2. If λk
j ≥ λ̃

k
j (ρ), ∀k, j , we have

θ
k
j = w̃∗(ρ)/h̃(ρ) = λ̃

k
j (ρ)/αk

j ≤ λ
k
j /α

k
j .

• Then δj ≤ 1, and a dynamic programming
system is obtained.

• The dynamic system admits a stationary
regime with a unique asymptotic average
train time-headway h(ρ) such that h(ρ) > h̃.

• In this case, passengers have effect on the
train dynamics, which can be measured by
h(ρ)− h̃(ρ).

3. If ∃(k, j), λk
j < λ̃k

j (ρ), we have

θ
k
j = w̃∗(ρ)/h̃(ρ) = λ̃

k
j (ρ)/αk

j > λ
k
j /α

k
j .

Then δj > 1. We do not have a guarantee on the
dynamic-stability of the dynamic system.
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Control parameters w̄ and θ

In order to treat the dynamic-instability case (item (3)
above) corresponding to λk

j < λ̃k
j (ρ), we take

max(λk
j , λ̃

k
j (ρ)).

The dwell time constraint is now

wk
j ≥

h̃(ρ)−
αk

j w̃∗(ρ)

max(λk
j ,λ̃

k
j (ρ))h̃(ρ)

gk
j j is platform,

0 otherwise.

The dynamics are written

dk
j = max



d
k−bj
j−1 + rj + w j ,

(1− δ̃k
j (ρ))d

k−bj
j−1 + δ̃k

j (ρ)dk−1
j + ...

+(1− δ̃k
j (ρ))rj + h̃(ρ),

d
k−b̄j+1
j+1 + sj+1,

where ∀k, j, ρ,

0 ≤ δ̃k
j (ρ) =

αk
j w̃∗(ρ)

max(λk
j ,λ̃

k
j (ρ))h̃(ρ)

=
λ̃k

j (ρ)

max(λk
j ,λ̃

k
j (ρ))

≤ 1.
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Control parameters w̄ and θ - Summary

We summarize the latter findings in the following result.
Theorem.
If δ̃k

j (ρ) are independent of k for every ρ and j , then dynamic
system

dk
j = max



d
k−bj
j−1 + rj + w j ,

(1− δ̃k
j (ρ))d

k−bj
j−1 + δ̃k

j (ρ)dk−1
j + ...

+(1− δ̃k
j (ρ))rj + h̃(ρ),

d
k−b̄j+1
j+1 + sj+1,

where ∀k, j, ρ,

0 ≤ δ̃k
j (ρ) =

αk
j w̃∗(ρ)

max(λk
j ,λ̃

k
j (ρ))h̃(ρ)

=
λ̃k

j (ρ)

max(λk
j ,λ̃

k
j (ρ))

≤ 1.

admits a stationary regime with a unique additive eigenvalue
h, which coincides with the asymptotic average growth rate of
the system, independent of the initial state d0.
Moreover, We have

h ≥ h̃.
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Numerical example (1/3)

FIG.: Illustration of λ̃(ρ), which is proportional here to the
control parameter θ(ρ).

λ̃
k
j (ρ) = α

k
j (w̃∗(ρ)/h̃(ρ)),

FIG.: Asymptotic average train time-headway in function
of the number of moving trains. The average passenger
arrivals on the platforms is equal to 1 times a factor c given in
the figure.
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Numerical example (2/3)

FIG.: Asymptotic average train frequency in function of
the number of moving trains. The average arrival passenger
on the platforms is equal to 1 times a factor c given in the
figure.

FIG.: Asymptotic average train frequency in function of
the number of moving trains, and of the average arrival
passenger on the platforms.
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Numerical example (3/3)

FIG.: Average arrival rates λj for every platform j , in
passenger by second. The mean of those rates is 1.

FIG.: Train time-headways and flows in function of the
number of moving trains. The arrival passenger rates are
varied by multiplication by factor c given in the figure.
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Thank you for your attention

Ifsttar
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