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Outline

1. Max-plus algebra model

¢ analytical results on the tain dynamics
e without taking into account passenger traffic demand

2. Stochastic dynamic programming model
¢ Take into account passenger demand
3. Fix the parameters of the control model

¢ Derivation of the passenger demand effect on the train dynamics
and on the service performance
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Max-plus algebra model

Max-plus algebra model

platform platform platform
1 | | 1 1 ——— e
—
nodej-1 nodej nodej+l —_—
T T L L
platform
segmentj  segmentj+l

n number of segments in the line.

m number of moving trains.

d;‘ the kth train departure time from node j.
a]'.‘ the kth train arrival time to node j.

r; the running time of a train on segment j.

wjk = djk = al'.‘ the kth train dwell time on node j.

—r k
=htw.

9 = al’-‘ — djk’1 the node safe separation

hf = df — d}"‘ = gf + wf : the kth departure
time-headway at node j.

- rjk (by definition).

X upperbound for x.

X lower bound for x.

g=r+s
t=r+w

h=g+w=t+s=(n/mt=(n/(n— m))s
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Max-plus algebra model

The model

Two time constraints

m A constraint on the travel time on every segment j.

Kk
o >d

m A constraint on the safe separation time at every segment j.

k+b;

kB _ b k=bjyq _ k+biy _
/Il g e =y T =G T 2 G i = S
That is _
df > dk_b 2
/R TR/ @
= We combine the two constraints
K k=bj
q :max{dj_1 t/,dﬁ_1 +s/+1},k>1 1<j<n, 3)
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Max-plus algebra model Instability due to passenger demand Stable dynamic programming model

Max-plus algebra formulation
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Max-plus algebra model

Max-plus matrix formulation

Homogeneous linear Max-plus algebra systems

P P
x(k) = @D A @ x(k — 1) = @D +'Aix = A(y)x.
1=0 1=0

Then
d=Av)®d,
where A(+y) is given as follows.
e Ps € €
yP2t, € o8y €
£ .
A(y) = 7
(’Y) 5 000 'ijlj 5 fybj+1 §j+1
&
,.yb1 §1 c ce £ ")/bnln
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Max-plus algebra model

Max-plus generalized eigenvalue

Generalized eigenvalue
Ap~hev=yv, )
where A(;L_1 ) is the matrix obtained by valuating the

polynomial matrix A(~y) at pt

Theorem (Baccelli et al. 1992, Goverd 2007)

Let A(y) = eDf:OA,'y’ be an irreducible polynomial matrix
with acyclic subgraph G(Ap). Then A(~y) has a unique
generalized eigenvalue p > e and finite eigenvectors v > &
such that A(u~") ® v = v, and p is equal to the maximum
cycle mean of G(A(~)).

= max W(e)/D(c).

where C is the set of all elementary circuits in G(A(~)).

Graph associated to A(~)

m Forevery0 </ < p,anarc (i, j, /) is associated for
each non-null (# €) entree (/, j) of max-plus matrix
A

m A weight W(i, j, I) and a duration D(i, j, I) are
associated to each arc (i, j, /) in the graph with
W(i,j,1) = (A)j # € and D(i, j, 1) = I.

m Similarly, a weight, resp. duration of a circuit (directed
cycle) in the graph is the standard sum of the
weights, resp. durations of all the arcs of the circuit.

m The cycle mean of a circuit ¢ with a weight W(c) and
a duration D(c) is W(c)/D(c).

m A polynomial matrix A(~y) is said to be irreducible, if
G(A(~y)) is strongly connected.
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Max-plus algebra model

Average asymptotic train time-headway

Theorem

The dynamic system admits a unique additive eigenvalue p,
which is also its asymptotic average growth rate, and which is
interpreted in term of train dynamics, as the asymptotic
average time-headway h of the trains. We have

m n—m

P P
h=u=max{#,max(§j+§j), 5L
i

platform platform

platform

(t01.By)

platform

Proof
his given as the maximum cycle mean of G(A(~)). Three
different elementary circuits are distinguished on G(A(~)).

m The hamiltonian circuit in the direction of the train
movements, with mean E/‘ ﬁj/m.

m All the circuits of two links relying nodes jand j + 1,
with mean ;/» 4 S each.

m The hamiltonian circuit in reverse direction of the
train dynamics, with mean =; S (n— m).
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Max-plus algebra model

Fundamental traffic diagram (1/3)

Space headway - time headway fundamental diagram for a metro line of length 17.294 km

_ 200 _
g -
§ 150
H
£ 100
£ 7050
£ 50
38556 896,06 288233

Space headway (meter)

m 9 stations = 18 platforms
m  max train speed = 80 km/h
= block length = 200 m

= minimum dwell time = 10 s

m safety time =30s

h(o) = max {To, it

1
o

his the average time headway,

o = L/mis the average space-

w
41 (°
s

headway,

T = E/- gj/L = 1/v is the inverse of the maximum

train speed v,

hmin = max; hj = max;(t; + s;),

w = Ej§j/l-s

o = L/nis the minimum space-

the line.
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Max-plus algebra model

Fundamental traffic diagram (2/3)

400,

~—asymplotic average dwell time w |t
- - asympotic average safe separation time g /i
—asymptotic average time-headway h =g + w|

/i

200

w, g, and h (second)

7059

0 10 1929 30 44.85 50
Number of moving trains

m 9 stations = 18 platforms
m  max train speed = 80 km/h
= block length = 200 m

= minimum dwell time = 10 s

m safety time =30s

w
h(o) = max < 7o, hmin, T (
T T

Armin ©J
w(p) =max W, — p —r, — —9gr-
p P

T [k
9(p) = max {; = W, (r + hmin) — r;m P> Q} .

[ ] = 1/o is the maximum train density on the line.

P
B w=3w/n =%/

mg= E/&/n.
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Max-plus algebra model

Fundamental traffic diagram (3/3)

Density-flow fundamental diagram for a metro line of length 17.294 km

§ 20

10 1929 30 44.85 50
Number of moving trains

9 stations = 18 platforms
m max train speed = 80 km/h
= block length = 200 m

= minimum dwell time = 10's

m safety time =30s

(p) = min {vp, fmax, W' (7 — p) } ,

B fmax = 1/hnin is the maximum flow of trains that
can pass through one segment.

m v = 1/7 is the free (or maximum) train-speed on the
metroline.

m w' = 1/wis the backward wave-speed for the train
dynamics.
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Max-plus algebra model Instability due to passenger demand Stable dynamic programming model

The traffic phases (1/3)
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The traffic phases (2/3)

‘Space headway - ime headway furdamental diagram for a metro ne f fengih 17,294 km

Ea 2625
Space headway (meter)

~—-asympiotic average dvel fme
- asymptac average sefe separation tine g | |
—asynpiot avrege ime headvayh =g +v| /|

o 550 6
Rimber of moving rains

Densiy-fow fundamental diagram for @ meto ine of engih 17.294 km

Maximum train-capacity traffic phase.
(fmax/V < p < p — fmax/W').
m The line operates at its maximum train-capacity.

m The frequency is independent of the number of
moving trains.

m The average dwell time w increases linearly with the
number of the moving trains.

m The average safe separation time g decreases
linearly with the number of moving trains.

m The average time-headway h = g + w remains
constant and independent of the number of moving
trains.

m The optimum number Lfnax /v of moving trains on
the line is attained at the beginning of the this traffic

phase, as the passengers are not taken into account.
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The traffic phases (3/3)

‘Space headvay - tme heacay fundamental iagram fo a metro Ine f engih 17 284 k.
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Densiy-fow fundamental diagram for @ meto ine of engih 17.294 km

Congestion traffic phase. (5 — fmax/w’ < p < p).

m Trains bother each other on the line, which operates
under capacity.

m Big average time-headways h.

m The safe separation time is independent of the
number of moving trains.

m The average time-headway, as well as the average
dwell time increase rapidly with the number of
moving trains.
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Instability due to passenger demand

Unstable dynamic model (1/3)

platform platform

platform

nodej-1 nodej nodej+l

platform

segmentj  segmentj+l

m The train dwell time w; at platform j depends on the
passenger volume at platform j.

m which depends on the safe separation time gjon the
same platform.

= We do not consider a dynamic model for the
passenger volumes on platforms.

m The dwell times on platforms depend directly on the
passenger arrival rates.
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We consider the following additional constraint on the dwell
time at plaforms.

X;
J ok PP
/k S { CA gj, ifjindexes a platform,

0 otherwise.

m qj is the total passenger upload rate from platform j
onto trains, if j indexes a platform; and «; is zero
otherwise.

k

=g = al’.‘ — dl.k’1 is, the safe separation time on

segment j.

m ) is the average rate of the total arrival flow of
passengers to platform j, if j indexes a platform ; and
Aj is zero otherwise.
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Instability due to passenger demand

Unstable dynamic model (2/3)

By taking ito account the additional constraint we have

k< [0 Aj
o 2 -7+ mex{wy oy

Then
k—bj
d_ 4! +n+w,
K _ A\ KB (A k=1 A
d;i = max <1+aj>dj—1 Cy d/ + 1+ 5
k—b;
j+1
Gp1 © F Sjp

~—

Tjs

The dynamic system has explicit and implicit terms.

It can be written as follow.

dk

_ u gk—1y u gk u
i = M e ") 5+ @@y 3 @l

where MY and NV are square matrices, and ¢ is a
family of vectors.
Matrices NV express implicit terms.

If 3/, Aj/; > 0, then one of the matrices
MY, u e UorNY, ue U is not sub-stochastic.

In this case, the dynamic system cannot be seen as
a dynamic programming system of a stochastic
optimal control problem.
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Unstable dynamic model (3/3)

Instability due to passenger demand

Particular cases

If m = 0 or m = n, then the dynamic system is fully
implicit (it is not triangular).

It admits an asymptotic regime with a unique
asympotic average train time-headway.

This case corresponds to 0 or n trains on the metro
line. No train departure is possible for these two
cases.

We have the average train flow f = 0 corresponding
to the average time headway h = +oco.

If0 < m < n, then the dynamic system is triangular.

There exists an order of updating the components of
the state vector a¥, in such a way that no implicit
term appears.
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Instability

The dynamic system is not stable (see Breusegem et
al. 1991).
Consider the metro line as a server of passengers.

® average passenger arrival rate A

® average service rate aw™ /h (with the
assumption of infinite passenger capacity of
trains).

In the high passenger demand case, where the

second term of the maximum operator of the
dynamics is activated, we get

w" = (X/a)g

Therefore A = aw™ /g > aw™ /hsince g < h.

Hence, the passenger server is unstable.
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Stable dynamic programming model

Stable dynamic programming model (1/3)

m  We modify the train dynamics in order to guarantee m The dynamics are now written
its stability.
m We replace the dwell time control formula df‘:bf + 1+ w
/. w;,
P ﬁgk, if j indexes a platform, d¥ = max 1= sk o Th Ly skgk=1 4 (1 _ sk
wi > q % ;= J ) St i % ]
0 otherwise. _
k—Db;
j+1
diq +Sj415

by the following.

_ # . Mquﬁquhwk
w;‘ > Wi — ng if j indexes a platform, o " . i -
0 otherwise. [ ] ;. are independent of k for every j, then
k u jk—1 u gk u:
m  We reversed the sign of the relationship between the d = S‘:&KM )+ (N"dY); + gl
dwell time w}‘ and the safe separation time g;‘.
m without reversing the relationship between the dwell = In this case, the system is a dynamic programming
time ij and the ratio )‘l}'(/’llk‘ s%st_em of an optimal control problem of a Markov
chain.

= W, (maximum dwell ime on node ) and 6% are
control parameters to be fixed.

Traffic Modeling and Real-time Control for Metro Lines — SMRT - 12 May 2016 — Nadir Farhi 18



Stable dynamic programming model

Stable dynamic programming model (2/3)

Let us consider the dynamic system xk*1 = f(xk), where
f:R" — R

® A map fis said to be additive 1-homogeneous if
Vx € R",Va € R, f(al + x) = a1 + f(x).
m fis said to be monotone if
VX, y € R, x <y = f(x) < f(y).

If f is 1-homogeneous and monotone, then it is non
expansive (or 1-Lipschitz) for the supremum norm, i.
e.

vx,y € BT J[f(x) = f(1)lloo < |1X = ¥lloos

In this case a directed graph G(f) is associated to f.

Traffic Modeling and Real-time Control for Metro Lines — SMRT

Directed graph G(f) associated to f (Gaubert et al. 1999)
It is defined by the set of nodes {1,2, ..., n} and by a set
of arcs such that there exists an arc from a node i to a node j
iflimy — oo fi(n€) = oo, where g; is the jth vector of the
canonical basis of R".

Theorem. (Gaubert et al. 1998, Gunawardena et al. 1995)
If f : R" — R is 1-homogeneous and monotone and if G(f)
is strongly connected then

m f admits an (additive) eigenvalue, i.e.
Ju eR,Ax e R : f(x) = pu+ x.
m Moreover, p coincides with the asymptotic average

growth rate of the dynamic system xAt1 = £(x¥),
defined by limy_, oo 4(x)/k.
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Stable dynamic programming model

Stable dynamic programming model (3/3)

m The system of the stationary regime is
h+ d; = max[(M“d); + (N(h + d)); + ¢/,
+ 0 = max[(Md); + (N(h + d); + ¢f]

where his an eigenvalue and d is an associated
eigenvector.

Theorem.

1. If 6;‘ are independent of k for every j, and if
0 < ¢; < 1, ), then the algebraic system of the
stationary regime admits a unique eigenvalue h.
2. Moreover, the asymptotic average train
time-headway, coincides with the eigenvalue h,
independent of the initial state vector d°.

= We do not have yet an analytical formula for the

asymptotic train time-headway.

However, the Theorem above guarantees its
existence and its uniqueness.

Therefore, by iterating the dynamics, one can

approximate the asymptotic average train
time-headway as follows.

h~ d /K, vj, for a big value of K.
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Control parameters w and 6

Theorem. Let h be the asymptotic average time-headway
solution of the max-plus linear system. The dynamic
programming system with parameters w; = h, Vj, and

8 = 1,Vj, is a max-plus linear system, whose asymptotic

average time-headway coincides with F.

(h,1) (%))

—
0 OO0
(ﬂfi) &) Ry GD ED
L
O
R | 1) D GD G #1)

(&)

Dt
h= maX{#, max(t; + s;), ——
m J

proof.

Stable dynamic programming model

If §; = 1, Vj, then system is a max-plus linear
system whose associated graph has n additional
circuits (which are loop-circuits).

Moreover, if w; = h, Vj, then the cycle mean of the
loops are all equal to h.

All the other parameters remaining the same, the
asymptotic average time-headway h is given by the

maximum cycle mean of the graph associated to the
obtained max-plus linear system.

Four different elementary circuits are distinguished.

® We have the same three cicuits. ~
® The n additional loop-circuits have mean h.
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Stable dynamic programming model

Control parameters w and 6

m The latter Theorem, tells us that one can simply fix m  We show below that a convenient way is
Wi 0% = (R LS _ _ ¥ .
(W, 0;) = (h(p), A\j /) w(p) == Wi(p) = h(p), Vj,
or equivalently 0(p) = 0f (p) = W (p)/F(p), Vi, k.

(#, 6f) = (A(p), 1), ) _
where hand w™ are respectively the asymptotic
to obtain a max-plus linear dynamic system, which average time-headway and dwell time on platforms
does not take into account passenger effects. derived from the max-plus linear traffic model.

The question here, is rather, how to fix the control
parameters (w;, 6;) in order to really model the effect
of passengers on the dwell times ?
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Stable dynamic programming model

Control parameters w and 6

At the stationary regime, server-stability condition is

A < (W (p)/h(p))

Then, for XK = XK(p) = a(#*(p)/h(p)), VK, Ji
we have

(#, ) = (A(p), Af /af) = (R(p), W* (p)/F())-

The dynamic system is max-plus linear, i.e. it
behaves as if passengers do not have any effect on
the train dynamics.

Basing on that, we assume that i;‘(p) is a threshold
for A, i.e. a lower bound for AX beyond which the

passengers will have an effect on the train dynamics.

We now fix, the parameters
(W, 0f) = (F(p), #* (p)/F(p)) independent of AX.

Traffic Modeling and Real-time Control for Metro Lines — SMRT

1. If Aj’-‘ = X/’-‘(p),vk,j, we get the max-plus linear

dynamic system, and the passengers do not have
effect on the train dynamics.

2. If xj’.‘ > i;f(p),Vk,/, we have

of = " (p)/h(p) = Xf(p)/af < Af/af.

® Then ¢; < 1, and a dynamic programming
system is obtained.

The dynamic system admits a stationary
regime with a unique asymptotic average
train time-headway h(p) such that h(p) > h.
In this case, passengers have effect on the
train dynamics, which can be measured by
h(p) — A(p).

3. 113(k, /), Af < XK(p), we have

0f = " (p)/h(p) = X (p)/af > Af /o5

Then §; > 1. We do not have a guarantee onthi
dynamic-stability of the dynamic system.

- 12 May 2016 — Nadir Farhi
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Control parameters w and 6

m [n order to treat the dynamic-instability case (item (3)

above) corresponding to A}'-‘ < A}‘(p),we take
max(Af, X(p)).

m The dwell time constraint is now

oK (p)
whk > {1 max(\K XKGohp) U1 platiorm
0 otherwise.

Stable dynamic programming model

The dynamics are written

fi=lay
gy + 0+,
@ k—b; = _
d —maxd (O~ 5K(p)d._,” +5jk(p)d;‘ Ty
! +(1 = 8K (o)) + Ap),
k—Db;
g/l
diq + 841,
where Vk, j, p,
aKir* (p)
0 < 5k = L
S K 3K oNF o)
i (P) max(\K, XK (0))F(p)
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Stable dynamic programming model

Control parameters w and 6 - Summary

We summarize the latter findings in the following result.
Theorem.

If S;‘(p) are independent of k for every p and j, then dynamic
system

k—b/-

dj—1 + 0+,
- k—b; . K—1

— (1 =8 eNd_y" + 5 (o)~ + .

+(1 = 8K(p))r; + Alp),

k—b;
j+1

dj+1 + 811,

where VK, j, p,
oKir* (p)
0< 5k =/ -
< o (e) max(\J X (0))A(0)
3K
~ max(AFXK(p)) =

admits a stationary regime with a unique additive eigenvalue
h, which coincides with the asymptotic average growth rate of
the system, independent of the initial state .
Moreover, We have .

h > h.
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Max-plus algebra model Instability due to passenger demand Stable dynamic programming model

Numerical example (1/3)

£ N
Alp) = ab(p) = i (p)/hlp)

Am) < Xp) | Am) > Ap)
i ‘Max-plus linear

EJ 0 EJ » &0 70
Number of moving trains
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Stable dynamic programming model

Numerical example (2/3)

Asymptotic average train frequency in function of
the number of moving trains, and of the average arrival
passenger on the platforms.

Asymptotic average train frequency in function of
the number of moving trains. The average arrival passenger
on the platforms is equal to 1 times a factor ¢ given in the
figure.
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Max-plus algebra model Instability due to passenger demand Stable dynamic programming model

Numerical example (3/3)
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Max-plus algebra model Instability due to passenger demand Stable dynamic programming model
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